
Ilkka Turunen – Solutions Architect - Sonatype
@IlkkaTurunen

A chain of Trust
- How to implement a secure supply chain approach

The credibility slide
B.Sc (Eng) Software - 2011

LEAN / AGILE Research:
–  Product manager FreeNest (ALM toolkit)

2009 - 2013
–  Project subject matter expert: JAMK

University 2009 - 2013

CI / CD Expertise:
–  Cloud Architect: Cloudreach 2014-2015

•  LEAN / CD pipeline architecture
•  Analytics systems engineering

–  Founder of OpenStack Finland User
Group

–  Contributor to Cloud Software Program
Open Cloud Stack line now used as
reference architecture for public DCs in
Finland

Business:
–  Co-founder / CTO: Nestronite 2009-2013

Current:
–  Solutions Architect EMEA / APJ -

Sonatype

A hands-on demo of CVE-2015-8103
•  This Article published: November 6th 2015
•  Mitigation: 6th of November
•  Fix committed to source; Nov 7th 2015
•  Fixed version released: Nov 11th 2015

•  This much you probably know J

1/3 haven’t been patched (End of May
16)
Search: “X-Jenkins” port “8080” Export of N=10,000:

•  1.x series
–  7795 (78% of all servers)

•  All fixed versions (2.x, 1.x)
–  6834 (68% of all servers)

•  Servers with Fixed version (1-
series):
–  4629 (46% of all servers)

•  Vulnerable Servers:
–  3166 (32% of all servers)

Why is this happening?
•  Why are there 1/3 unpatched instances left?
•  What is the real cause?

3rd party components are behind this:
commons-collections

Further analysis of 3rd party prevalence
•  Applications:

•  Organizations downloads from Central Repo (2015):

106
compone

nts

24
known

vulnerabi
lities

9
restrictive
licenses

Orders Quality Control

Average
downloads

with known
vulnerabilities

% with known
vulnerabilities

% known
vulnerabilities
(2013 or older)

240,757 15,337 6.4% 66.3%

Beyond Heartbleed: OpenSSL in 2014
(31 in NIST’s NVD thru December)
•  CVE-2014-3470 6/5/2014 CVSS Severity: 4.3 MEDIUM ß SIEMENS *
•  CVE-2014-0224 6/5/2014 CVSS Severity: 6.8 MEDIUM ß SIEMENS *
•  CVE-2014-0221 6/5/2014 CVSS Severity: 4.3 MEDIUM
•  CVE-2014-0195 6/5/2014 CVSS Severity: 6.8 MEDIUM
•  CVE-2014-0198 5/6/2014 CVSS Severity: 4.3 MEDIUM ß SIEMENS *
•  CVE-2013-7373 4/29/2014 CVSS Severity: 7.5 HIGH
•  CVE-2014-2734 4/24/2014 CVSS Severity: 5.8 MEDIUM ** DISPUTED **
•  CVE-2014-0139 4/15/2014 CVSS Severity: 5.8 MEDIUM
•  CVE-2010-5298 4/14/2014 CVSS Severity: 4.0 MEDIUM
•  CVE-2014-0160 4/7/2014 CVSS Severity: 5.0 MEDIUM ß HeartBleed
•  CVE-2014-0076 3/25/2014 CVSS Severity: 4.3 MEDIUM
•  CVE-2014-0016 3/24/2014 CVSS Severity: 4.3 MEDIUM
•  CVE-2014-0017 3/14/2014 CVSS Severity: 1.9 LOW
•  CVE-2014-2234 3/5/2014 CVSS Severity: 6.4 MEDIUM
•  CVE-2013-7295 1/17/2014 CVSS Severity: 4.0 MEDIUM
•  CVE-2013-4353 1/8/2014 CVSS Severity: 4.3 MEDIUM
•  CVE-2013-6450 1/1/2014 CVSS Severity: 5.8 MEDIUM
•  …

As of 2014, internet scans by
MassScan reveal 300,000 of

original 600,000 remain
unpatched or unpatchable

Source: Security is Dead. Long Live Rugged DevOps: IT at Ludicrous Speed - Josh Corman, Gene Kim

Year in vulnerabilities 2015
•  CVE-2015-8103

–  CVSS: 7.5 HIGH
•  Other vulnerabilities in NVD on Nov-Dec

–  62 HIGH (CVSS 7-8.9)
–  19 CRITICAL (CVSS 9-10)

10 CVEs == 97% of attacks in 2014

Source: Verizon Data Breach Report 2015

36%
High

vulnerabilities

http://www.banyanops.com/blog/analyzing-docker-hub/

40%
High

Vulnerabilities
In 2015
images

23%
High

Vulnerabilities
In latest
images

jar
app

container

system

Build & bundle

Deployment

Provision

Compound risk: layered opacity

jar
jar

jar
jar jar

TTR: 250**

TTR: 50**

TTR: 25**

TTR: 10**

**Source: CrossTalk: The Journal of Defense Software Engineering – average time measurement applied

SO HOW ARE WE TRYING TO
PREVENT IT FROM HAPPENING?

Section 2 – What does the law say?

PCI – DSS
Req 6

6.1 Establish a process to identify security vulnerabilities, by using
reputable outside sources for security vulnerability information, and assign a
risk ranking (for example, as 'high,' 'medium,' or 'low') to newly discovered
security vulnerabilities.

6.2 Ensure that all system components and software are protected
from known vulnerabilities by installing applicable vendor-supplied security
patches. Install critical security patches within one month of release.

IEC-62304
SOUP stands for
software of unknown (or uncertain) pedigree (or provenance),

Specific practices to take when using SOUP as part of a medical
device may include review of the vendor's software
development process, use of static program analysis by the
vendor, design artifacts, and safety guidance

“

” Source: Wikipedia

The road is always paved with good
intentions
Antipatterns
•  Security / CVE Checklists

–  Human-led initiatives
–  Human-led considerations

•  Bulk approvals of
components
–  Again, smarter-than-thou
–  Doesn’t scale

•  Deplugging completely
–  The law may require it but it

sure isn’t nice

Outcomes
•  Top 3 items are followed. The

rest are fixed ‘later’

•  As organisation grows process
grinds to a halt.
–  Shadow sourcing orgs emerge

(hotspots)
•  Not today

SOFTWARE SUPPLY CHAIN
MANAGEMENT AND RUGGED
DEVOPS

Introducing process where it matters

Supply chain

Sage advice from the man who helped
bring Japan back from the brink

W. Edwards Deming’s 14 Principles included:

•  Cease dependence on inspection to
achieve quality. Eliminate the need for
inspection on a mass basis by building
quality into the product in the first place.

•  End the practice of awarding business on
the basis of price tag. Instead, minimize total
cost. Move toward a single supplier for
any one item, on a long-term relationship of
loyalty and trust.

Benefits seen in other industries

Defensible Infrastructure
10%

Written

Operational Excellence

Situational Awareness

Counter-
measures

The software & hardware we
build, buy, and deploy. 90% of
software is assembled from 3rd

party & Open Source

Source: Security is Dead. Long Live Rugged DevOps: IT at Ludicrous Speed - Josh Corman, Gene Kim

Traditional AppSec
Perspective

Dependency managers == Software
supply chain managers

Java / Maven2

<dependencies>
 <dependency>
 <groupId>javax.activation</groupId>

 <artifactId>activation</artifactId>
 <version>1.1</version>

</dependency>

Ruby / Gem

source 'https://rubygems.org'

ruby '2.1.0'

gem 'rails', '4.1.0'

gem 'unicorn'

gem 'pg'

gem 'sass-rails', '~> 4.0.3'

gem 'uglifier', '>= 1.3.0'

gem 'coffee-rails', '~> 4.0.0'

Node.js / NPM

"dependencies": {

 "glob": "^5.0.3",

 "json-parse-helpfulerror": "^1.0.2",

 "normalize-package-data": "^2.0.0"

 },

 "devDependencies": {

 "standard": "^3.3.1",

 "tap": "^1.2.0"

 },

 "optionalDependencies": {

 "graceful-fs": "^4.1.2"

 },

 "license": "ISC"

}

Transitive dependencies (Maven central Aug 2015)

Complex	interedependencies	

Translated into a Software Context
1.  Control the amount and quality of suppliers or components you

use
2.  Standardise your component catalog as opposed to allowing

every team to reinvent their toolkit
3.  Leverage automated quality controls and governance

guidelines as early as possible in the software life cycle to
eliminate easily avoidable risk.

4.  Maintain a bill of materials of all software and their underlying
components

5.  Institute leadership that can help improve the overall state of the
component supply chain

1 – CONTROL THE AMOUNT AND QUALITY
OF SUPPLIERS

What to look out for in a good project to
source
•  Release Frequency (Latest / MTR)
•  Popularity in Ecosystem (Dead project vs Stable)
•  Internal popularity
•  Number of vulnerabilities
•  MTTR of said vulns
•  Licenses
•  Pull Requests Monthly Avg

Artifact repositories are key to
implementing this quality control
•  Catalogs
•  Keep track of
•  Audit trails of all downloads
•  Prevent shadow acquirements

(well…. As best as you can J)

Software Factory & Component Based Development

Public Repos

Binary
Repo

Build

Source
 Code

Deploy

Dev

QA

UAT

Prod

Audit trail

Control point

#npmgate – March 22nd 2016
•  “In this case, though, without warning to developers of

dependent projects, Azer unpublished his kik package and
272 other packages.

•  One of those was left-pad. This impacted many thousands
of projects. Shortly after 2:30 PM (Pacific Time) on Tuesday,
March 22, we began observing hundreds of failures per
minute, as dependent projects — and their dependents,
and their dependents… — all failed when requesting the
now-unpublished package.”

http://blog.npmjs.org/post/141577284765/kik-left-pad-and-npm

module.exports = leftpad;

function leftpad (str, len, ch) {
 str = String(str);
 var i = -1;
 if (!ch && ch !== 0) ch = ' ’;
 len = len - str.length;

 while (++i < len) {
 str = ch + str;
 }
 return str;
}

2. STANDARDISE YOUR CATALOG

Let’s refresh the stats
•  Average application:

•  Assume an Organisation:
•  30 Applications * 106 components * 5 versions * 60%

unique components in app = 9540 Unique
Components

106
compone

nts

24
known

vulnerabi
lities

9
restrictive
licenses

Standardisation
•  Important to know the tools to build your defensible

castle
•  There is no one-size fits all solution to standardisation as

teams and business lines differ

Standardisation guidelines
•  Be picky about components.

–  Use cases?
–  Licensing?
–  Type? Should we be using 5 different auth libraries as a

company or just one?
–  How many versions should we accept? N-1? N-2?

Software Factory & Component Based Development

Public Repos

Binary
Repo

Build

Source
 Code

Deploy

Dev

QA

UAT

Prod

Audit trail

Control point Catalog

How it could look like

3. LEVERAGE AUTOMATION AND
EXISTING WORKFLOWS

vBSIMM Framework model

Source: FS-ISAC Appropriate Software Security Control Types for Third Party Service and Product Providers

UNIT
INTEGRATION

FUNCTIONAL

SYSTEM
ACCEPTANCE

The onion model of software testing

UNIT
INTEGRATION

FUNCTIONAL

SYSTEM
ACCEPTANCE

The onion model of * testing

SECURITY & GOVERNANCE

[INFO] Evaluating policies... (ETA 30s)
[INFO]
--
[INFO] BUILD FAILURE
[INFO]
--
[INFO] Total time: 37.210 s
[INFO] Finished at: 2015-10-21T18:38:53+01:00
[INFO] Final Memory: 17M/496M
[INFO]
--
[ERROR] Failed to execute goal com.sonatype.clm:clm-maven-plugin:
2.1.1:evaluate (default-cli) on project WebGoat: Sonatype CLM reports
policy failing due to
[ERROR] Policy(No high sec vulnerabilities) [
[ERROR] Component(gav=commons-fileupload:commons-fileupload:1.2.1,
hash=384faa82e193d4e4b054) [
[ERROR] Constraint(No secs) [Security Vulnerability present because:
Found 4 Security Vulnerabilities, Security Vulnerability Severity >= 7
because: Found Security Vulnerability with Severity >= 7]]]

Synchronous

Asynchronous

Use the CI Pipeline to incrementally
improve security practices

On-the-go analysis
as you build

Amplify signals
Fast feedback on a sufficient

enough level of detail

Deep dive checks

Human analysis and
interpretation. Code
reviews, audits, etc

**** COMMERCIAL DISCLAIMER – OTHER TOOLS EXIST J

Synchronous testing

Asynchronous
testing – outside of Delivery Cycle

Dep / Static ana
lysis

Rugged Software Factory

Public Repos

Binary
Repo

Build

Source
 Code

Deploy

Dev

QA

UAT

Prod

Early Feedback
on 3rd parties

Strict Enforcement

Trusted objects

4. BILL OF MATERIALS

Avoid reverse engineering

Antipattern: Re: Re: Fwd: Re: Do we
have this?

Manual searches or search API?
"results": [
 {
 "applicationId": "001",
 "applicationName": "Bank X Better Payment",
 "reportUrl": "http://localhost:8070/ui/links/application/001/report/cc8f94e42e3c4b6f93c86b35df9b648f",
 "hash": "40fb048097caeacdb11d",
 "componentIdentifier": {
 "format": "maven",
 "coordinates": {
 "artifactId": "commons-collections",
 "classifier": "",
 "extension": "jar",
 "groupId": "commons-collections",
 "version": "3.1"
 }
 },
 "threatLevel": 9
 },
 {
 "applicationId": "002",
 "applicationName": "Bank X build server",
 "reportUrl": "http://localhost:8070/ui/links/application/002/report/3c3b7ac5dc7344daa627248487a9662d",
 …..
•  },

5. BUILD EXPERTISE AND INSTITUTE
LEADERSHIP

DevOps	Teams’	view	of	the	security	
guy	

Build knowledge in teams in terms they
understand

UNIT
INTEGRATION

FUNCTIONAL

SYSTEM
ACCEPTANCE

GOVERNANCE

Security enabling, not blocking the
process
•  Unit testing has become TDD (Test Driven Development)
•  Usability testing has become BDD (Behaviour Driven

Development)
•  Integration testing has become MDD (Model Driven

Development)

•  Q.E.D Security testing needs to become SDD
(Security Driven Development)

Be transparent with knowledge
•  More eyes on data is better. Leverage Dashboards

SO IN CONCLUSION

Static analysis

In-depth analysis

Dept analysis

Rugged Software Factory

CI CD

Public Repos

Binary
Repo

Build

Source
 Code

Deploy

Dev

QA

UAT

Prod

Early Feedback
on 3rd parties

CI Enforcement

Trusted objects

Documented
deployment
schematics

Common status
dashboards

Translated into a Software Context
1.  Control the amount and quality of suppliers or components you

use
2.  Standardise your component catalog as opposed to allowing

every team to reinvent their toolkit
3.  Leverage automated quality controls and governance

guidelines as early as possible in the software life cycle to
eliminate easily avoidable risk.

4.  Maintain a bill of materials of all software and their underlying
components

5.  Institute leadership that can help improve the overall state of the
component supply chain

Benefits seen in other industries

62 10/23/2013
 @joshcorman

Defensible	Infrastructure	

Opera2onal	Excellence	

Situa2onal	Awareness	

Counter-
measures	

DevOps

DevOps

DevOps

True collaboration via Transparency

Rugged
Devops

Shifting left

Thanks - References
•  Wired Article – Hackers remotely kill Jeep on Highway: https://www.wired.com/2015/07/hackers-remotely-kill-jeep-highway/
•  State of Devops 2015: https://puppetlabs.com/2015-devops-report
•  Rugged Devops Book: http://devops.com/2015/04/20/the-rugged-devops-ebook/
•  Rugged Software: http://www.ruggedsoftware.org/
•  DevSecOps: http://devsecops.org
•  DevOpsSec – Securing Software Through Continuous Delivery by Jim Bird: http://www.oreilly.com/webops-perf/free/devopssec.csp
•  “The Phoenix Project” by Gene Kim: http://itrevolution.com/books/phoenix-project-devops-book/
•  State of Software Supply Chain 2015: https://www.sonatype.com/state-of-the-software-supply-chain
•  7 Habits of Rugged Devops: https://www.forrester.com/report/The+Seven+Habits+Of+Rugged+DevOps/-/E-RES126542
•  Verizon Data Breach Report: http://www.verizonenterprise.com/verizon-insights-lab/dbir/2016/
•  CodeCentric CI Example: https://blog.codecentric.de/en/2015/10/continuous-integration-platform-using-docker-container-jenkins-sonarqube-nexus-gitlab/
•  FS-ISAC: https://www.sonatype.com/software-security-control-white-paper
•  IEC-62304: http://www.iso.org/iso/catalogue_detail.htm?csnumber=38421
•  PCI-DSS: https://www.pcisecuritystandards.org/document_library?category=pcidss&document=pci_dss
•  Reflections on NPMGate: http://blog.npmjs.org/post/141577284765/kik-left-pad-and-npm
•  Lessons learnt again from NPMGate: http://www.sonatype.org/nexus/2016/03/25/npm-gate-lessons-learned-again/

Tweet: @ilkkaturunen

