JBESAINNG

i | APRSES

Grip on Secure Software Development

How a Dutch government standard conquered the danger of haste

Rob van der Veer July 1512016

- =

Industry quotes illustrate a big danger

“We assume our software supplier knows how to create secure software.”

“l thought the guys from operations would do that.”
“It has to comply with OWASP” or “Communication needs protection.”
“We didn’t expect anyone to ever check our code.”

“We think you’ll appreciate our self-made crypto.”

“Those requirements did not apply to what we were making so we didn’t
take them serious.”

“Ah, did that bug lead to reputation damage?”
“We don’t encrypt internal communication because that’s too slow.”

“We’re fine because we did a penetration test.” or “We have tool X.”

Introducing

Rob van der Veer
Principal consultant
Software Improvement Group

r.vanderveer@sig.eu
@robvanderveer
+31 6 20437187

WwWw.sig.eu/security

> APPSEC
EUROPE

ROMA

MMXVI

Agenda

1. The danger of haste

2. The ‘Grip on Secure Software Development’ initiative
3. How the method works

4. Lessons learned

5. Future work

ROMA

MMXVI

So what is happening?

Clients and suppliers!") don’t take time to arrange secure software:

« Requirements are lacking or vague and unspecific
 Who does what is unclear

» No security dialogue

* Proven technology is ignored

» Developers not informed on risks

* No risk management

* Tools and pentesting regarded as panacea

* Looking at code is avoided

ROMA (1) Either internal development department or external vendor/system integrator
MMXV]

For some mysterious reason, people are trying really hard to avoid looking at code.
Yet, there are all kinds of expectations about the quality of code. It needs to be
maintainable. Security, reliability and performance need to be built in.

The danger of haste

Quality becomes an afterthought: no security by design

Test & fix at the end:
— Time pressure only allows for quick fixes
— Effortx 100 ()
— Tests miss weaknesses

Some risks are wrongfully ignored

« Result:

— lower security and higher cost
— Also: disturbed relations between parties involved

> APPSEC
EUROPE

(1) B. Boehm and V. R. Basili. Software defect reduction top 10 list. IEEE Computer, 34:135-137, 2001. 7

MMXVI

What is the cause?

» Clients want visible results quick

* You can’t control what you don’t measure

« Clients have little experience with security

« Suppliers love to implement their own ideas

 There was no shared idea on how to start and what to do

ROMA

MMXVI

The Grip on SSD initiative s

« Standard to arrange software security without intervening with development

« Developed by the Dutch government organisation ‘Center for Information
security and Privacy protection’ (CIP) and many others

e Main points addressed:
— Risk management
— Security requirement dialogue
— Verification strategies

* A free common standard
to guide both clients and suppliers

t(:: Handover of the method by CIP to the Dutch
central government ClIO, Dion Kotteman

ROMA 9

MMXVI

Grip on SSD practitioner community

« 30 organizations (government, system integrators, experts)
« Share experience and grow the standard

* Newsletter, regular meetings, working groups

« Links with OWASP, Dutch CERT, ENISA

& i o . T Ui i Yy
S0 Ministerie van Binnenlandse Zaken en P Ministerie van Volksgezondheid Miksteile vin Biasiciag [D lllll IL Vivoering [PPM Nationaa ICyberS eeeeeeeeeeee
38 Koninkrijksrelaties M e iz B 77 n Veiligheid er)

Ly elzijn en Spor!

. ‘ - S VE T=%5 vb sapgen mun
o2 Agentschap NL ‘f"m Belastingdienst S . e e = 3
% Mini erievanEconvn?is e Zaken, L3
-y
C L) socETI © centric CGI
-

10

We are Centric. We

when the right peop
highest. That is why we invite pro
A
1d combine mmmlents knowledge and ideas.

Products at www.griponssd.org

 Method handbook

« Baseline requirements
 Verification guide

« Training slides for testers
« Contract templates

Grip op

Secure Software
Development

SO F S s,

N\ AR AT AR -~y 7YY Y
S
R "y

sl } OPE
/ ROMA \ 12

§
A MMXVI -
-M -

SIVA notation of requirements

SSD-12 Session termination
Criterion (who | The (web) application terminates a session after a set period of inactivity
and what) by the user i i inati
Vi
Objective Preventing a session froph being unattended and accesgible to other
(why) people for longer than A limited period of time, after thie user session is
left unattended.
Risk The lack of a sessigh termination could have the resylt that the already
opened session igabused by a malicious person.
Reference NCSC /NIST 1S027002 i
/| AC-12 11.3.2 i/
SSD-12 Session termination |
indicators
/01 predefined period
[01.01 A default of 15 minutes is used, unless the functionality requires otherwise.
SSD-12 Session termination /
indicators £ See “Siva” by Wikram Tewarie, VU University Press, 2014
[02 automatic session termination
/02.01 The (web) application automatically activates session termination after an
interval of inactivity required by the client.
/02.02 Session termination corresponds to logging out by the user and the (web) 13

application thereby accordingly destroys the session.

The method

Security requirements input

Gap .
’» Reporting
Internal (dashboard), extern (compliance)

SSD processes

Baseline requirements, building blocks,
attack patterns, business impact analysis

NHELREWSE Risk management and acceptance

Security Contact moments T

testplan
Requirementg
Code
review Pentest

W@@ Initiation Develop Production

Development process 7

Key best practices

« Have standard requirements

« Risk analysis for every project and tailor the requirements
* Be clear, but do not try to be complete

« Comply or explain

« Keep track of (accepted) risks

» Perform penetration tests

» Agree with supplier on early independent code reviews

'n:'r;"h) gy

ROMA

MMXVI

APPSEC
EUROPE

15

Lessons — implementing Grip on SSD

* First: minimum baseline, dashboard and mandatory risk
analysis for every IT project

» Acquire/contract skills for the above
* Next, extend supplier contracts

« Manage expectations and increase maturity step by
step, following the included maturity model

ROMA
MMX VI

16

Lessons — setting requirements

« Use the requirements to start the conversation.

* You cannot cover all security specifics in requirements
* Too much to cover: vast area and many variations
* Too dynamic, constantly evolving

How to write secure software

s |1 AERSES TR T

/ ROMA \ Security Gap: not required, but expected or
A MMXVL_~ requirements suggested in the requirements

The security requirements catch 22

ISO Characteristic (1) Security (15025010)
- Confidentiality
ISO Sub-characteristics (5) (1S025010)
Security requirements
System properties (9) Secure data transport
Sub ies (30 Cache
e PIEpEriEs (el prevention/destruction
, Empty transport cache
Best practices (76) at system crash
System type specific Web: cleanup on Blind spot: _ o
practices (1,000s) request level Standards, experience, training.
?APPSE(Technology specific ASP.NET specifics on
practices (100,000s) cache cleanup

MMXVI

L essons - verification

« Verify the product, do not fix the process and then hope
* Don't rely on pentesting, or scan tools only

* Do not limit verification to the set requirements
 Review code by experts

« Don't limit code review to security flaws
— Privacy
— Maintainability

ROMA

MMXVI

19

_-- -

Penetration 1 Au\tc\)mated static
tests codeanalysis

BU|J’d quality

Security analy5|s & reviews

de5|gn/code K
reviews

APPSEC
EUROPE

She AII securlty risks et

- ——

In summary, Grip on SSD provides

« Security by design
* More security for the money
-> |less incidents, less impact -> less damages
* Insight in risks
* Ashared way of working in the industry
« Better relations between parties involved

21

Future work

* More publications
— Working on ‘Privacy by design’
— Adding code review guidelines
— Adding Grip on SSD maturity self-assessment

 |nternationalization
— Translations done with IBM, Centric and Sogeti
— Increase collaboration through OWASP

ROMA

MMXVI

22

